Weighted analysis of microarray gene expression using maximum-likelihood

نویسندگان

  • David J. Bakewell
  • Ernst Wit
چکیده

MOTIVATION The numerical values of gene expression measured using microarrays are usually presented to the biological end-user as summary statistics of spot pixel data, such as the spot mean, median and mode. Much of the subsequent data analysis reported in the literature, however, uses only one of these spot statistics. This results in sub-optimal estimates of gene expression levels and a need for improvement in quantitative spot variation surveillance. RESULTS This paper develops a maximum-likelihood method for estimating gene expression using spot mean, variance and pixel number values available from typical microarray scanners. It employs a hierarchical model of variation between and within microarray spots. The hierarchical maximum-likelihood estimate (MLE) is shown to be a more efficient estimator of the mean than the 'conventional' estimate using solely the spot mean values (i.e. without spot variance data). Furthermore, under the assumptions of our model, the spot mean and spot variance are shown to be sufficient statistics that do not require the use of all pixel data. The hierarchical MLE method is applied to data from both Monte Carlo (MC) simulations and a two-channel dye-swapped spotted microarray experiment. The MC simulations show that the hierarchical MLE method leads to improved detection of differential gene expression particularly when 'outlier' spots are present on the arrays. Compared with the conventional method, the MLE method applied to data from the microarray experiment leads to an increase in the number of differentially expressed genes detected for low cut-off P-values of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Microarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment

Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2005